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An extended mapping approach is used to obtain a new type of variable separation exci-
tation, with three arbitrary functions, of the (2 4+ 1)-dimensional generalized dispersive
long wave equation (DLWE). By selecting appropriate functions, the richness of non-
propagating solitons, such as nonpropagating dromion, nonpropagating ring, nonprop-
agating lump, and nonpropagating foldon, etc., is displayed for the (2 4 1)-dimensional
generalized dispersive long wave equation (DLWE) in this paper. Meanwhile, we con-
clude that the solution v; and vy are essentially equivalent to the “universal” formula.

KEY WORDS: extended mapping approach; generalized DLW systems; nonpropa-
gating soliton.
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1. INTRODUCTION

Recently, in the study of higher dimensional nonlinear systems, noticeable
progress has been made on the propagating solitons (Tang et al., 2002; Tang and
Lou, 2003a; Zheng and Sheng, 2003; Zhang, 2001, 2002; Zhang et al., 2001;
Zheng and Chen, 2004). However, the real natural world is very colorful. In some
cases, it is not enough to describe the natural phenomena merely by the propa-
gating solitons. For instance, Wu et al. (1984) reported about the nonpropagating
hydrodynamical breather solitons in their experiment. Denardo et al. (1990) have
also observed a kink in the phase of surface wave oscillations on a shallow liquid
in a parametrically driven rectangular channel. The forced standing or nonpropa-
gating solitary wave phenomena, such as breather and kinks as mentioned above,
can be explained by the cubic noninear Schrodinger equation (NLS; Drazin and
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Johnson, 1989) which were formulated by Larraza and Putterman (1984) and
Miles (1984).

Though there are many investigations on nonpropagating solitary wave, both
in theoretical and experimental aspects (Chen et al. 1995; Wang et al., 1986; Wu,
1985; Yan and Yang, 1989). to the best of our knowledge, less work has been
done to investigate the nonpropagating solitons in higher dimensional nonlinear
physical systems. In this paper, we investigate the existence of these phenomena
for the celebrated (2 4 1)-dimensional generalized dispersive long wave equation
(DLWE)

Uy + (vx + I’”'ty)x =0,
v + (uv+u+uxy)x :O’ (1)

which was introduced by Ablowitz and Clarkson (1991). The (1 + 1)-dimensional
DLWE (y = x of (1)) is called the classical Boussinesq equation. There exist a
large number of papers to discuss the possible applications and exact solutions of
the (1 + 1)-dimensional DLWE (Chen and Lou, 2003; Musette and Conte, 1994,
Musette et al., 1995). Various interesting properties of the (2 4 1)-dimensional
DLWE have been studied by many authors (Lou, 1993, 1994, 1995; Paquin and
Winternitz, 1990; Tang and Lou, 2003b). For example, Paquin and Winternitz
(1990) showed that the symmetry algebra of Eq. (1) is infinite-dimensional and
KacMoody-Virasoro structure. Lou (1995) outlined nine types of two-dimensional
similarity reductions. Tang and Lou (2003b) have already proved that the (2 + 1)-
dimensional DLWE also possesses a quite “universal” formula

—2(apaz — ay a2)pqu

U 5
(ap + a1 p + axq + a3 pq)

(@)

which is valid for the suitable physical fields or potentials for a large type of
(2 + 1)-dimensional physically interesting nonlinear models, such as the Davey—
Stewartsen (DS) equation, the dispersive long wave (DLW) equation, the Broer—
Kaup—Kupershimidt (BKK) system, the Nizhnik—Novikov—Veselov (NVV) equa-
tion, the nonintegrable (2 + 1)-dimensional Korteweg—de Vries(KdV) equation,
the general (N+M)-component AKNS system, and the (2 + 1)-dimensional sine-
Gordon equation, and so on (Hong et al., 2003; Ruan and Chen, 2001, 2003;
Tang et al., 2002; Tang and Lou, 2003a,b; Zhang et al., 2001; Zhang, 2001, 2002;
Zheng and Sheng, 2003; Zheng and Chen, 2004) which is now called multi-linear
variable separation approach (MLVSA). In expression (2), p = p(x, t) is an arbi-
trary function of {x, ¢}, ¢ = ¢q(y, t) may be either an arbitrary function of {y, ¢}
or an arbitrary solution of a Riccati equation, while ay, a;, a; and a3 are taken as
constants. And we find that the solution v; and v, in our following discussion are
essentially equivalent to the “universal” formula (2). However, as far as we can
see, its nonpropagating solitons were not reported in previous literature.
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Many powerful methods for searching for the solitary wave solutions to non-
linear evolution equations (NEE) have been proposed. Among them, the extended
mapping approach (Peng, 2003) is one of the most effective straightforward meth-
ods to construct soliton excitations of NEEs. The basic idea of this approach is
as follows. Consider a given nonlinear partial differential equation (NPDE) with
independent variables, x = (¢, xi, x2, ..., X,), and dependent variable u,

N(Z,X[,I/t,l/tt,lxtx,l/txi,btxixj,...):O. (3)

‘We seek for its solution of the form

w=y a0 (qx), “

i=0

with ¢ satisfying the equation
¢’ =¢’ + po, )

where p is a constant and the prime denotes the derivative with respect to g. To
determined u explicitly, we take following three steps:

Step 1: Determine n by balancing the highest nonlinear terms and the highest-
order partial differential terms in the given NPDE (3).

Step 2: Substituting (4) with (5) into (3) and eliminating all the coefficients
of the powers of ¢ to obtain a set of partial differential equations for a;(i =

0,1,...,n)and ¢, from which ¢; and ¢ are determined.
Step 3: As (5) possesses the general solutions
p=—2{1+uann]La-awl| ©)
2 2
where —p < f <0asp>0and0 < f < pas p <0, and
¢=—§{1+coth[§(q—qo)]}. )

where f < por f>0asp>0and f>—por f <0as p <0,and g is an
integral constant. For convenience, we take go = 0 in the following discussion.
Substituting a;, g and (6) or (7) into (4), one can obtain possible solution of (3).

2. NEW EXACT SOLUTIONS OF THE (2 + 1)-DIMENSIONAL
GENERALIZED DISPERSIVE LONG WAVE EQUATION

In this section, we apply the method to Eq. (1). By the balancing procedure,
ansatz (4) becomes

u=f+gdq),
v="F+Go(q)+ Hp*(q), ®)
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where f, g, F, G, H and ¢ are functions of X = (x, y, t) to be determined. Sub-
stituting (8) with (5) into (1) and eliminating all the coefficients of the powers of
¢, we get

68qyqx” +3gq, H =0, ©)
6Hgx* +3g°qyq.c =0, (10)

4H, gy +2Gq> +2 Hqur + 10 Hpgx® 4+ 2849,qt +2 84,4x

+8(8xqy +38Pqyqx + 8y4x + 84xy)

+(8x +8Pqx)84y + 89:(8y + gpqy) =0, (11)
8xqyqx +284xqxy +28qyqxx + 8(12pqyqx + 2qxy)qx + 2Hg,

+2fHq: + g(Gqx + Hy +2Hpqy)

+28yqx" + (gx + gpgy)H + gq:G =0, (12)
8:qy +4H.pqx + f:8qy + (8« + 8P9x)(8y + 8Pqy) + 84x fy + 2G g«

+38pqyq: +3Gpqy” + 2Hpqsx +4Hp qs” + gqry + Hix

+ f(8xqy +38P49yqx + 8yqx + 89xy) + 8(8xy + 8x Py

+ 8y Pqx + 8PAxy + 8P 4yqx) + 8yq: + Gux =0, (13)
8uxy + Gai + 6 8. payqx + 88x + 8(7 P 4yqx + 3 Paxy)dx + 3 8PGy G

+3 8pquqey + f(Gqx + Hy + 2Hpq,) + (G, + Gpq,) + 3¢, pq.”

+28xqxy + H +2 Hpg, + fr H + (8« + 8pq:)G

+ 89 F + 8quxy + 28xyqx + &yqxx = 0, (14)
8P4 + &y + 8 Pqy + GP*q:” + Gux + gPasy + 80°aya: + fe(8y + gPay)

+ f(8uy + &Py + 8yPdx + 8PGxy + 8P 8yqx) + 8fvy

+(&x + gpqx) fy +2Gx pgx + Gpgxx = 0, (15)
G: + Gpq; + 8« + 8P4x + & Pdxx + Gxxy + xxyPqy + 8y P g X’

+ f(Gx + Gpq.) + gFx + 28:0*qy4x + 8070y G

+8(P°qyqx + P*4y)qx + fG + (gx + 8Pq)F + 8> qxqxy

+28xyPqgx +28xPqxy + 8PGxxy = 0, (16)

ﬁy+ffx;*+fxfy+Fxx:Oa (17)
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Ft+fo+fx+fxxy+fo:O- (18)
Based on the Egs. (9) and (10), we have
H = -2q.qy, g==2q,. (19)

substituting (19) into (11) and (12), yield

iq,xx + CIXZP — 4

G= _251xy - ZPQXst f= (20)
qx
Reducing Egs. (13)—(18) by using (19) and (20), we obtain
F=— :FCIXCIty + qxzpqu + CIXCIxxy - Qquxy + %cy‘]t + qx2 i (21)

qx?
with
4 oy + 24X Qrxxy — 9 G Gy + GX Grreey — GX° P qrxy — 4X* PP Grx Gy
+ e Grry @t = GX Qrxxxny — A5 QryGer + 4 Gux Gy — 1205 @y
— 31 qxyqt* — 44exq X Grrey — 241Gx qrxxy — 44X rxxGaxy
—24X%Grexry — 24X Gy Grxx — 4 Qxd X Gexy + 9 Qi Geary — 24X Graydy
—241:qX*qry — 44X GrayGxr + 8 4uGxyGixGrx + 4 AxGrydin s
+ 8GxxqxGxxxxy + 8Gxxqxxxxyqr + 2 G1qxxqxqry + 4 41 Gxgxxxgxy = 0. (22)

It is obvious that to obtain the general solution of the Eq. (22) is difficult.
Fortunately, it is straightforward to find that the basic simple ansatz can be taken
as

g = xx)+ o)+ (), (23)

where x = x(x), ¢ = ¢(y), T = t(¢) are three arbitrary variable separation func-
tions of x, y and ¢, respectively.

Substituting (19)—(21) and (23) into (8) with the solutions of the Eq. (5), we
can derive the solution of the Eq. (1), namely

X0 — T
u = %:I:pxxtanh [g()( +(p+T)], (24
p’ p’ p
v = —1+7xx<py—7xx¢ytanh2 [E(x +(p+r)], (25)
:tXxx - T 14
wy = =0 pyccosh [Loc+ g4+ (26)

X

2 2
p p p
V2 =~ S Xey = S Aay cos h? [—2 X +¢+ f)], 27)
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where x (x), ¢(y), T(¢) are three arbitrary variable separation functions.

In fact, the solutions (25) and (27) in our paper is essentially equivalent to
the quite “universal” formula (2) by selecting the function p(x,t), g(y,t) and
constants ay, ap, az, az properly.

For the solution (25), when setting p = 2 and considering the field w; =
—v; — 1, namely

Wi = —2x:@y + 2x:0y tanh*(x + ¢ + 1)
oMty expl2(x + ¢ + 7]
[1+exp2(x +¢ + 1)

from which, we can see that choosing p(x, t) = exp[2(x (x) + t1(¥))], ¢(y, 1) =
exp[2(p(y) + 2())], T(1) = T1(t) + 12(2), a1 = ao = 0, a9 = a3 = 1. Thus

(28)

w; = U. (29)
Similarly, for the solution (27), if setting p = 2 and considering the field w, =
—v; — 1, namely
wy = =2y + 2xxpy COLR* (X + ¢ + 1)

gy expl2(x + ¢ + 1))
[1+exp2(x +¢ + NI

and then choosing p(x,t) = exp[2(x(x) + T1(t))], g(y, t) = exp[2(p(y) +
)], t(t) = 1(t) + ©a(t),a; = a, =0,ap = 1, a3 = —1, we can see

(30)

wy, =U. 3D

Therefore, all the localized excitations based on the common formula (2) can
be obtained from the solutions (25) and (27). Meanwhile, if selecting the functions
p(x,t) and ¢(y, t) appropriately in the common formula (2), we also can get the
nonpropagating solitary wave excitations as follows.

3. (2 + 1)-DIMENSIONAL NONPROPAGATING SOLITARY
WAVE EXCITATION

Because of the arbitrariness of the functions y (x), ¢(y) and t(¢) included in
Egs. (24)—(27), the physical quantities u and v possess quite abundant structures.
For example, when x(x) = kx, ¢(y) = cy, 1(t) = dt, all solutions (24)—(27) be-
come simple travelling wave excitations, which have been obtained in Fan (2003).
Here, we are interested in revealing new kinds of (2 + 1)-dimensional nonprop-
agating solitary wave excitations, such as nonpropagating dromion excitation,
nonpropagating compacton excitation, nonpropagating ring excitation, nonpropa-
gating lump excitation, and nonpropagating foldon excitation. For simplification,
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Fig. 1. (a) A nonpropagating dromion excitation plot of the solution v; expressed by (32) with
condition (33) at time ¢t = 0; (b) the corresponding evolutional plot related to (a) at y = 0 and at time
t=-3,t=0,tr=3.

in the following discussion, we merely analyze the special localized excitations of
solution (25), and set p = 2, namely

V=v=—142)x0, — 2x:@ytan h*(x + ¢ + 7). (32)

3.1. Nonpropagating Dromion Excitation

At first, we study the nonpropagating dromion structure. If the functions x, ¢
and t are simply chosen to be

X =tan h(x), ¢ =tan h(y), Tt = exp(sin(?)), (33)

then the solution as shown in (32) becomes nonpropagating dromion excitation,
which decays exponentially in all directions, depicted in Fig. 1. From the evaluation

:'i"‘l"'.‘n :0‘5 :
AN o
.-'%“ﬁﬂl’] \ v 0.7
‘m“ll\‘ll\\lll | =
ﬂwuluuln\:'ﬁm... *’91

21-0.8-0.6-04-02 0 02 0.4 0.6 0.8 1
X

(b)

Fig. 2. (a) A nonpropagating compacton excitation plot of the solution v; expressed by (32) with
condition (34) at time ¢ = 0; (b) the corresponding evolutional plot related to (a) at y = 0 and at time
t =—100,7r = 0,1 = 100.
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Fig. 3. (a) The nonpropagating ring breather evolutional plots of the solution v; expressed by
(32) with condition (35) at time (a)t = —4, (b)t = =2, (c)t = 0.9, (d)t = 2, (e)t = 4, respectively;
(b) the contour plot related to (a)—(e) and their values of the contour figure are set V = —2, 0.

of Fig. 1(b), we can find that the spatial position of dromion does not change with
time, but the amplitude changes with time.

3.2. Nonpropagating Compacton Excitation

If setting

T = exp(sin(t))
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0 x< -7
x = { sin(2x) + 1 -7 <x=7%
2 x> 7
5
0 y=-—%
— : St 5m
¢ =1 15sin(08y)+1 —F <y=<=¥¢ (34)
5
3 y >3

then, we may obtain some types of nonpropagating compacton excitations. The
corresponding plot is presented in Fig. 2. From the evaluation Fig. 2(b), we can
find that the spatial position of compactons does not change with time, but the
amplitude changes with time.

3.3. Nonpropagating Ring Soliton and Standing Breather Excitation

Based on the solution v; (32), we can derive the ring soliton excitations. If
selecting

x=-x @=-y, T1=¢, 35)

then, the solution as shown in (32) becomes nonpropagating ring soliton exci-
tation, which is not equal to zero identically at some closed curves and decays
exponentially away from the closed curves. The corresponding evolutional plot is
shown in Fig. 3. From Figs. 3(a)—(e), we can find that the spatial position of ring
soliton does not change with time. Meanwhile, their contour plot is presented in
Fig. 3(f).

—0.99994
-0.99996
—0.99998
v -1 =
-1.00002
-1.00004
-1.00006

@) (b)

Fig. 4. (a) The nonpropagating lump excitation plot of the solution v; expressed by (32) with
condition (36) at time ¢ = 2; (b) the contour plot related to (a) at time t = —2, —1,0, 1, 2, and its
values of the contour figure are set V = —1.00002, —0.99998.
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3.4. Nonpropagating Lump Excitation

Similarly, we can construct the nonpropagating lump excitation. For example,
when x(x), ¢(y) and 7(¢) are chosen

x =exp(x?), @ =exp(—0.5y"), =13 (36)
solution (32) becomes nonpropagating lump excitation, which decays alge-
braically in all directions, as depicted in Fig. 4. From the contour as shown in
Fig. 4(b), we can observe that the central position of the lump excitation does not
change with time.

Fig. 5. (a) Evolution plot of a single-foldon solutions determined by (32) with (37) at times
()t = =8, (b)t =—7, (c)f =0, (d)t =5, (e)t = 100; (b) the contour plot related to (a) at time
t =-8,—7,0,5, 100 and its values of the contour figure are set V = —0.8.
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3.5. Nonpropagating Foldon Excitation
In order to construct folded excitations, we choose

xe = sech(¢)?, x = ¢ — 1.15tan h(?),

@, = sech(n)?, y = n — 1.15tan h(n),
n(t) = exp(sin(?)), (37)

from which, we know that ¢ and 7 are some multi-valued functions in certain
regions of x and y, respectively. So the solution v; is a multi-valued function of
x and y in these regions though it is a single-valued function of ¢ and 5. The
corresponding evolutional plot is presented in Fig. 5. From the Fig. 5(a)—(e), we
can find that the central position of the foldon structure does not change with time
but the its shape changes with time. Meanwhile, their contour plot is presented in
Fig. 5(f).

4. SUMMARY AND DISCUSSION

In summary, with the help of the extended mapping approach, we have suc-
cessfully realized the variable separation and derived corresponding solutions
with three arbitrary functions. By selecting these arbitrary functions properly, a
wealth of (2 4 1)-dimensional nonpropagating solitons, such as nonpropagating
dromion excitation, nonpropagating ring excitation, nonpropagating lump excita-
tion and nonpropagating foldon excitation, are obtained. This method presented
in this paper is an initial work, more application to other (1 + 1)-dimensional or
(2 + 1)-dimensional nonlinear physical systems, even higher dimensional nonlin-
ear physical systems should be concerned, and deserve further investigation.
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